

Background

- GQIP collaboration of IS a Georgia ACS TQIP hospitals
- GQIP AKI rates were higher than national benchmarks (figure I)
- We aimed to develop an early AKI prediction model for trauma

Figure I GA 2020 TQIP Report

Methods

- Retrospective cohort study of adult trauma admissions in 2016 & 2017 from 10 GA trauma centers
- Primary endpoint: AKI within 14 days of presentation
- Data split:
- 70% Training Set
- 30% Validation Set
- Predictive multivariable logistic regression was trained and validated

Variable

Age (year (< 50) (≥ 50) **Gender** Male Female Race Black White Other Hypertei Yes No Heart Fa Yes Chronic I Yes Diabetes Yes No Smoker Yes Injury Ty Blunt Penetro Injury Se (0-20) (20-40) (> 40) Long Bor Yes CPR Pre-Yes No

Predicting acute kidney injury in a Georgia quality improvement program trauma cohort

Jesse Codner MD¹, Gina Solomon MHA RN², Kara Allard MPH², Tracy Johns MSN RN³, Katherine Kohler MD⁴, Ashley Jones MD³, Joe Sharma MD¹, Patricia Ayoung-Chee MD⁵, Christopher Dente MD¹ ¹Department of Surgery, Emory University, Atlanta Georgia; ²Georgia Quality Improvement Program; ³Department of Surgery, Atrium Health Navicent, Macon Georgia; ⁴Department of Surgery, Wellstar AMC, Atlanta Georgia; ⁵Department of Surgery,

Morehouse School of Medicine, Atlanta Georgia

Results

Table I Patient/Pre-Hospital Variables

					-
	ΑΚΙ	Νο ΑΚΙ	Total	P-value	
	(n=95)	(n=152)	(n=247)]
rs)	54.2 ± 20.3	47.4 ± 19.7	50.2 ± 20.2	0.011]
	41 (43.2%)	83 (54.6%)	124 (50.2%)		
	54 (56.8%)	69 (45.4%)	123 (49.8%)	0.081	Fluid Vol
]
	74 (77.9%)	116 (76.8%)	190 (77.2%)	0.845	
	21 (22.1%)	35 (23.2%)	56 (22.8%)		
					1
	56 (59.0%)	80 (52.6%)	136 (55.1%)		
	34 (35.8%)	66 (43.4%)	100 (40.5%)	0.692	Blood ⁻
	5 (5.2%)	6 (3.9%)	11 (4.4%)		
nsion					ED ED
	41 (43.2%)	37 (24.3%)	78 (31.6%)	0.002	
	54 (56.8%)	115 (75.7%)	169 (68.4%)		с с
ilure					1
	6 (6.3%)	3 (2.0%)	9 (3.6%)	0.093	
	88 (93.6%)	149 (98.0%)	238 (96.4%)		
Kidney Dx					Bloo
-	6 (6.4%)	7 (4.6%)	13 (5.3%)	0.55	
	88 (93.6%)	144 (95.4%)	232 (94.7%)		ISS S
Mellitus					1
	22 (23.2%)	27 (17.8%)	49 (19.8%)	0.302	ISS
	73 (76.8%)	125 (82.2%)	198 (80.2%)		
					Neph
	19 (20.0%)	47 (30.9%)	66 (26.7%)	0.061	
	76 (80.0%)	105 (69.1%	181 (73.3%)		
ре					1
-	82 (86.3%)	120 (79.0%)	202 (81.8%)	0.147	
ting	13 (13.7%)	32 (21.0%)	45 (18.2%)		
verity Score	23 (13-34)	10 (6-18)	14 (9-26)	<0.0001	1
-	41 (43.2%)	120 (79.0%)	161 (65.2%)		
	41 (43.2%)	25 (16.5%)	66 (26.7%)	<0.0001	
	13 (13.7%)	7 (4.6%)	20 (8.1%)		
ne Fracture					1.0 -
	31 (32.6%)	36 (24.0%)	67 (27.4%)	0.354	
	64 (67.4%)	114 (76.0%)	178 (72.6%)		
Hospital					1
	3 (3.2%)	1 (0.7%)	4 (1.6%)	0.170	0.8 -

Figure II ROC Curves for Training and Validation Sets AUC Training Model: 0.857 AUC Validation Model: 0.858

Misclassification Rate-28.4%

Table II Training Set Multivariable Log Regression Model on Early AKI

COMMISSION

ole	Crude OR (95% CI)	Multivariable OR (95%
		CI)
)	REF	REF
)	1.88 (1.01, 3.51)	2.95 (1.07, 8.14)
tension		
	2.60 (1.34, 5.05)	2.03 (0.76, 5.42)
	REF	REF
Severity Score		
))	REF	REF
10)	4.47 (2.16, 9.22)	4.84 (1.93 <i>,</i> 12.14)
)	7.86 (2.29, 27.02)	6.4 (1.33, 30.8)
stolic BP		
D)	3.82 (1.91, 7.62)	2.91 (0.99 <i>,</i> 8.56)
D)	REF	REF
IV Contrast		
	3.34 (1.63, 6.85)	3.36 (1.09, 10.3)
	REF	REF
rotoxic Abx		
	18.4 (5.24, 64.7)	24.79 (5.74, 107.06)
	REF	REF

Conclusion

• Final model predictors included Age, HTN, ISS Score, ED SBP, CT w/ IV Con, & Nephrotoxic Abx • Training Set AUC-85.7% Validation Set AUC-85.8% • Final model shows reasonable prediction as a screening tool

Future

 Analysis excluding Nephrotoxic Abx Collect new data to validate the predictive model

 Build a tiered AKI protective bundle Implement AKI risk prediction tool into EMR and utilize AKI protective bundle for high risk patients